Reference#

Encyclopedia MAITEanica.

protocols#

protocols.ArrayLike

protocols.image_classification.Augmentation(...)

An augmentation protocol for the image classification AI task.

protocols.image_classification.DataLoader(...)

A dataloader protocol for the image classification AI task providing batch-level data access.

protocols.image_classification.Dataset(...)

A dataset protocol for image classification AI task providing datum-level data access.

protocols.image_classification.Metric(*args, ...)

A metric protocol for the image classification AI task.

protocols.image_classification.Model(*args, ...)

A model protocol for the image classification AI task.

protocols.object_detection.Augmentation(...)

An augmentation protocol for the object detection AI task.

protocols.object_detection.ObjectDetectionTarget(...)

An object-detection target protocol.

protocols.object_detection.DataLoader(*args, ...)

A dataloader protocol for the object detection AI task providing batch-level data access.

protocols.object_detection.Dataset(*args, ...)

A dataset protocol for object detection AI task providing datum-level data access.

protocols.object_detection.Metric(*args, ...)

A metric protocol for the object detection AI task.

protocols.object_detection.Model(*args, **kwargs)

A model protocol for the object detection AI task.

tasks#

tasks.evaluate(*, model[, metric, ...])

Evaluate a model's performance on data according to some metric with optional augmentation.

tasks.predict(*, model[, dataloader, ...])

Make predictions for a given model & data source with optional augmentation.

tasks.evaluate_from_predictions(*, metric, ...)

Evaluate pre-calculated predictions against target (truth) data for some specified metric.

interop#

interop.metrics.torchmetrics.TMClassificationMetric(metric)

MAITE-compliant Wrapper for TorchMetrics Classification Metrics.

interop.metrics.torchmetrics.TMDetectionMetric(metric)

MAITE-compliant Wrapper for Torchmetrics Detection Metrics.

interop.models.yolo.YoloObjectDetector(...)

MAITE-wrapped object detection YOLO model.

utils#

check_type(name, arg, type_, *[, optional])

Check that an argument is an instance of one or more types.

check_domain(name, arg, *[, lower, upper, ...])

Check that an argument falls within [lower <=] arg [<= upper].

check_one_of(name, arg, collection, *vals[, ...])

Check that arg is a member of collection or of vals.

chain_validators(*validators)

Enable validators to be chained together.

errors#

MaiteException

Base exception thrown by the MAITE.

InvalidArgument

A MAITE interface was passed a bad value or type.

testing#

docs.validate_docstring(obj[, ignore, ...])

Validate an object's docstring against the NumPy docstring standard [Rf5befd11ff4f-1].

docs.NumpyDocErrorCode

docs.NumPyDocResults

pyright.pyright_analyze(*code_objs_and_or_paths)

Scan a Python object, docstring, or file with pyright.

pyright.PyrightOutput

The schema for the JSON output of a pyright scan

pyright.list_error_messages(results)

A convenience function that returns a list of error messages reported by pyright.

pytest.cleandir()

A pytest fixture that runs a test in a temporary directory as the current working directory.

project.ModuleScan()

Uses pyright's type completeness scan to summarize a module's contents.

project.get_public_symbols(scan[, ...])

Return all public symbols (functions, classes, etc.) from a module's API.