image_classification.DataLoader#
- class maite.protocols.image_classification.DataLoader(*args, **kwargs)[source]#
A dataloader protocol for the image classification AI problem providing batch-level data access.
Implementers must provide an iterable object (returning an iterator via the
__iter__method) that yields tuples containing batches of data. These tuples contain typesSequence[ArrayLike] (elements of shape(C, H, W)),Sequence[ArrayLike] (elements shape(Cl, )), andSequence[DatumMetadata], which correspond to model input batch, model target type batch, and a datum metadata batch.Note: Unlike Dataset, this protocol does not require indexing support, only iterating.
Methods
__iter__ -> Iterator[tuple[Sequence[ArrayLike], Sequence[ArrayLike], Sequence[DatumMetadata]]]
Return an iterator over batches of data, where each batch contains a tuple of of model input batch (as
Sequence[ArrayLike]), model target batch (asSequence[ArrayLike]), and batched datum-level metadata (asSequence[DatumMetadata]), respectively.