maite.workflows.predict#
- maite.workflows.predict(*, model, dataloader=None, dataset=None, batch_size=1, augmentation=None)[source]#
Make predictions for a given model & data source with optional augmentation.
Some data source (either a dataloader or a dataset) must be provided or an InvalidArgument exception is raised.
- Parameters:
- modelSomeModel
Maite Model object.
- dataloaderSomeDataloader | None, (default=None)
Compatible maite dataloader.
- datasetSomeDataset | None, (default=None)
Compatible maite dataset.
- batch_sizeint, (default=1)
Batch size for use with dataset (ignored if dataset=None).
- augmentationSomeAugmentation | None, (default=None)
Compatible maite augmentation.
- Returns:
- tuple[Sequence[SomeTargetBatchType], Sequence[tuple[SomeInputBatchType, SomeTargetBatchType, SomeMetadataBatchType]],
A tuple of the predictions (as a sequence of batches) and a sequence of tuples containing the information associated with each batch.